a2 United States Patent

Curtis et al.

US009270562B2

US 9,270,562 B2
*Feb. 23, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SESSION-BASED SERVER TRANSACTION

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

STORM CONTROLS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors:

John D Curtis, Milford, MA (US);

Russell Holden, Boxborough, MA (US);
Albert J. Morello, Meford, MA (US)

Assignee:

International Business Machines

Corporation, Armonk, NY (US)

Notice:

Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-

claimer.

Appl. No.: 14/445,414

Filed: Jul. 29, 2014
Prior Publication Data
US 2014/0337523 Al Nov. 13, 2014

Related U.S. Application Data

Continuation of application No. 13/841,284, filed on

Mar. 15, 2013, now Pat. No. 9,166,896.

Int. Cl1.

GO6F 15/173 (2006.01)

HO4L 12726 (2006.01)

GO6F 9/50 (2006.01)

HO4L 12/24 (2006.01)

U.S. CL

CPC ... HO4L 43/0876 (2013.01); GO6F 9/5083

(2013.01); HO4L 41/06 (2013.01)

Field of Classification Search

USPC oo 709/224; 705/66, 67, 44, 6
See application file for complete search history.

CLENT

(56) References Cited

U.S. PATENT DOCUMENTS

6,662,230 Bl 12/2003 Eichstaedt et al.
6,950,942 B2 9/2005 Guthery et al.
7,428,232 B2 9/2008 Park et al.
7,844,278 B1* 112010 Ross HO04W 72/0486
370/329
9,043,652 B2 5/2015 Arndt et al.
2007/0016687 Al 1/2007 Agarwal et al.
2007/0276765 Al* 11/2007 Hazeletal. 705/71
2008/0189214 Al* 82008 Muelleretal. 705/65
2008/0288403 Al* 11/2008 vonMueller GO6F 21/42
705/44
2009/0048953 Al* 2/2009 Hazeletal. 705/35
2009/0279436 Al* 11/2009 Chinetal. 370/237
2010/0281539 Al 11/2010 Burns et al.
2013/0091391 Al 4/2013 Arndt et al.
2013/0305080 Al* 11/2013 Behrendt GO6F 11/3006
714/2
2013/0311380 Al* 112013 Vines ..o GO06Q 20/36
705/66
2014/0280897 Al* 9/2014 Curtisccoeevnnee HO4L 41/06
709/224

2014/0317449 Al 10/2014 Kohno
OTHER PUBLICATIONS

“U.S. Appl. No. 13/841,284 Office Action”, Feb. 12, 2015, 4 Pages.
* cited by examiner

Primary Examiner — Jude Jean Gilles
(74) Attorney, Agent, or Firm — DeLizio Law, PLLC

(57) ABSTRACT

Transaction storm detection includes receiving a series of
transactions in a data stream for an authenticated network
session. A detection engine determines whether the transac-
tions form a transaction storm. In response to determining
that the transactions are a transaction storm, metrics associ-
ated with the transaction storm are presented. One or more
actions may be specified to be applied in a subsequently
detected transaction storm.

6 Claims, 10 Drawing Sheets

{118
SERVER

Atz
;;EN Ticq
Ssi0y, €0

102

TRANSAGTION
STORM
DETECTION
ENGINE

TRANSACTION
STORM ACTION
ENGINE

06

SERVICE

P
108

SERVER

TRANSACTION
STORM
MANAGEMENT
UNIT

TRANSACTION
D8

fo 112

U.S. Patent Feb. 23,2016 Sheet 1 of 10 US 9,270,562 B2

100 A
L~ 114 116
CLIENT SERVER
1 L())z
TRANSACTION \ TRANSACTION
STORM STORM ACTION
DETECTION ENGINE
ENGINE
06 108
104
service [
SERVER
TRANSACTION [N~ 110 NS 112
STORM TRANSACTION
MANAGEMENT DB
UNIT

FIG. 1

U.S. Patent Feb. 23, 2016 Sheet 2 of 10

200 X

US 9,270,562 B2

!

RECEIVE TRANSACTIONS IN A DATA STREAM
FOR AN AUTHENTICATED NETWORK SESSION

N~ 202

Do
RANSACTIONS
FORM A

NO

TRANSACTION
STORM?

YES

!

PRESENT METRICS ASSOCIATED WITH
TRANSACTION STORM

S~ 206

!

RECEIVE INDICATION OF ACTIONS TO APPLY IN

SUBSEQUENTLY DETECTED TRANSACTION
STORM

S~ 208

FIG. 2

U.S. Patent Feb. 23,2016 Sheet 3 of 10 US 9,270,562 B2
300 % ‘
RECEIVE TRANSACTIONS IN ADATA STREAM | _ .
FOR AN AUTHENTICATED NETWORK SESSION
YES
BEGIN REMEDIATION
L~ 306
ACTIONS
INTRODUGE RETURN ERROR
DELAY IN ONE CODE FOR ONE
308 310
orMoRe Y orRMoRe [
TRANSACTIONS TRANSACTIONS

FIG. 3

US 9,270,562 B2

Sheet 4 of 10

Feb. 23, 2016

U.S. Patent

¥ 'Old

id 00°90 pue TNV 0080 sowil Suimojjo ay3 usamiaq Suluuisag

¥ -(j|e J0j , 40) sweu Jaases/1asn Ag paleniul Wweans

HIHLIT 1aYUd Jo 19AIaS Q310 Ag poaleniul weans

DOZT :Spuodas uissadold pawinsuo)

(o]

‘UBIMIDG SPUOIASIILL T aBeiaAL WNWIXBW € YIM §OT :SUOIIDESUEL} BANIDSUOD JO JAGUINN

+ -(lje Jo4 , 40} BwieU 1BAIDS 1O} UOIIUYLRQ

» 00"

US 9,270,562 B2

Sheet 5 of 10

Feb. 23, 2016

U.S. Patent

g old

| 602050 1102/21/21 o1 Wd YOEE%0 L10TigLiel gosuier] sugp LHEAS ALY SHEEECHE L
1 LOPGED LIOZ/EL/EL Ol Wd ZE8VED L10Z/2L/EL EEEARLL Lo EddY CEEBEGISL
1 ZE/520 LIDE/Z1/ZL OV Wd LEEE20 1108/gLiel SEEASLL LOOASdAY CEEEECISL
{ #1°CEZ0 L1BE/Z1/21 OV Nd S/ 1720 L10Z/81/EL EEEASHL FLOASAAY SEEEEHE]
195°6E-10 L10Z/eL/gL OV Nd 1172810 wwmmwm.ﬁwwgg B[PEDT LAY CEEBLUIS L
17661710 LIOE/Z1/ZL OV Nd 2045 2L 1 BEIRG Wiois EEEASIL ELOASHAY (LA R
FEOLL-LL LIDZ/Elict OV £D B0 1L & OGS dAY Echlidiial
FLO-06- L LIBD/ S/l BTN SL EFBL | in LDAEddY LLDRICGIST
fZOEL0L 11I02/Z1/21 O WV £1°Z1°60 110e/21/e1 St LHASdAY 2001051
FLL-CE-90 Liggfel/el o1 WV 512080 wwm@ﬁwmﬂw/ : LRONASAAY LOGOLOIS L

US 9,270,562 B2

Sheet 6 of 10

Feb. 23, 2016

U.S. Patent

9 Ol4

poo3deH adejjepn oWeU JSAISS /1SN AQ paleiiul wessls

AN3IITD :410q 40 JSAISS ‘U1 AQ paieiiul wealls

2.19€ :spuodas 3uissadodd jejo}

U23M13Q SPUOIISI||IW 9FeISAR 95 UM 0076 T SUOIIORSURIT SAIINIJSUOD JO J3GUINN
WV TO'0S'TT TTOZ/TT/TT OL WV ST:Z#:0T TTOZ/TT/TT Wold Bull] Wiols
TTOASddY :Wwi01s Ag paladiel J1oAlas

LTOOTQISL Q1 WLIO]IS uoldesued |

US 9,270,562 B2

Sheet 7 of 10

Feb. 23, 2016

U.S. Patent

2 9Old

Ald 00:90 pue NIV 00:80 sawn Buimoijo} ayl usamiaq Juiuuidag
pPOOSUEH 9IEJ[EMA :(i|e 104 , 1O} SUIBU JBAIRS/IRSN AQ paleiliul wesns
INTTTD 424a 10 19AI3S JUBLD Ag paleiul weans

00CT :spuodas 8uissanold pawnsuo)

YO

"UBBMIST SPUCIISH|IL 0 9Fe43AL WnWIXRW & YUM Q0T ‘SUORIBSURIL DAIINIISUOD JO JSGUUNN

TTOASddYV (iie 104 , 4O} BWRU JDALISS 10} UOIHULDQ

LT00TQISL -] WJI0lS uolldesueld] palovleq
‘U008 9A0QE 94l 1988141 01 WI01S uoiIeSUeR] 93 2qioseg

SNjeA Uinlad dslunu e se uinisy

4O
0. E J042q

zor] I9)E SPUOIISHIW T Aejag

uoijoesuesy Aioas 104 Nﬁwuumwmb SHWI01S Y] aduQ
9.1 01 (s)uopoy
19)E} 01 Uoi3de 83 AjIdads

US 9,270,562 B2

Sheet 8 of 10

Feb. 23, 2016

U.S. Patent

8 Old

S € 3ION 1IN IvadN 'z |
T T NOMDIITIOI NI4O'T
[1:UnoD) Xepy UIN 7 @auanbasg

iy TJONLINN IVadn v
14 7%3 0z 310N N3dO €
76T (1T O4NIILON 13977
1 T NOHDITIOD N3IdO T
£€7:1UN03 XeN UIN T @2uanbag
SIONINDIS NOLLIVSNVHL INYOLS

£86¢ £86¢€ 6181 v J1ON 1IN 3Lvadn
0] iy L88 ¥ZiT NOIL23TI0D N340
0 147 YET 0L1T 310N N3dO

0 324 TEL €LTLT O4Ni 310N 139 ~ 08
SAUIM MSIQ speay ysiq Spu02as 8uissadoid jp1o} 1nod adAj uonoesuesj
AYVININNS NOLLOVSNVYEL INHMOLS
pooddey adejiEApn (aWiBU J3ALDS/19sN Ag paleniul weans
INIID (U104 40 JDAIDS JUDIPD Ag paleiluL Wieals
2£9€ spuod3s 3uissasodd jejog
USBMIQ SPUOIBSI|jIWL 3BRIBAR GG YUM 00Z6T SUOIIOESUEI] SAIINIBSUOD 4O JaGUNN
WV T0:0S:TT TT0C/CT/TT o4 ~Z08

WV ST:Z#:0T TT0Z/TT/2T Woi4 sui} Wiols
TTOASddV :w403s Ag pajoedie) 1anias
LTOOTCQISL "Gl W01 uoipesuel}

UMOYS (S5)49A48S 943 UO P1031aP USI] SBY WI0]S Uonoesue} SUimoljos ayt

»_008

US 9,270,562 B2

Sheet 9 of 10

Feb. 23, 2016

U.S. Patent

6 Old

Ald 00:90 pue IAY 00:80 SaWi} Buimojjoy 3yl uaamiaq Buiuuidag

pooddeH 2agjjepn ({]|e 10} , JO) BWRU JonIas/iasn Ag paleiliul weans

INID 424D J0 19AIDS ‘JUBYD Ag paleIliul Weasls

00¢T :spuodas 3ulssaoosd pswnsuoc)

-10)

‘USIMISC SPUOIISH|IW OF FLIaAR WNWIXEW & YHM Q0T :SUOHIDBSULIY SAITNIISUOI JO JagUNy
TTOASddY (]je 10} . 10) DUIRU JDAIDS JO} UOIUYS(Q

1@l WI01S uoi1oBsSURL| Paldsla(

1UOI10E BACqE ay) JoF314) 0] WIS UOIIDeSUEL] BY3 3qHdsa(Q

JLON" LN 31Vadn K]
3LON"N3do []
O4Ni 310N L35

NOILDATIOD N3do [
{s)odA1 uonsesuesl uMo{jo} 841 U0 BN{EA LINTBJ dBWNY e se PROT uiniey

suopoesuely§ Aisas jo T Aejep Aup [
JLON 1IN 31vadn]
3LON"N3do [
O4NI"3LON 1397
NOILI3TI0D N3dO K]
{s)adAy uonoesuen uimol|jo} sy
k] su0feq
| J314e spuodasljjiu 00T Aejeq
uonoesuesl AISA3 10} ‘PIIIDIIP SI WLOIS Yl dUQ
:3ye1 01 {Sjuonay
19y E) 03 UolE Ayl Ajioads

» 006

U.S. Patent Feb. 23,2016 Sheet 10 of 10 US 9,270,562 B2

1000 % -1
10;;1 1005
PROCESSOR NETWORK
UNIT INTERFACE
U003
1007
MEMORY
1010
6 STORAGE
TRANSACTION DEVICE(S)
STORM DETECTION
ENGINE
1012 1009
6 D
N
TRANSACTION
STORM ACTION
ENGINE

FIG. 10

US 9,270,562 B2

1
SESSION-BASED SERVER TRANSACTION
STORM CONTROLS

RELATED APPLICATIONS

This application is a Continuation of and claims the prior-
ity benefit of U.S. of America application Ser. No. 13/841,284
filed Mar. 15, 2013.

BACKGROUND

Embodiments of the inventive subject matter generally
relate to the field of transactional computer systems, and,
more particularly, to controlling transaction storms on trans-
actional computer systems.

It is common for database applications, enterprise messag-
ing and collaboration applications to have streams sending
units of work (i.e., transactions) to various types of services
resident on servers. It is possible that services can be over-
whelmed by the load caused by high numbers of transactions,
which can cause and have caused catastrophic failure. In
hosting these solutions in Software as a Service (SaaS) offer-
ings, sessions and streams can persist and the sources of
potentially destructive load increase in number. Servers, even
clustered servers, typically have hard, finite resources and
when the available resources are inequitably consumed, nor-
mal production throughput is endangered. Service outages
can be quite costly to a business. For example, in a typical
SaaS business where up time is linked directly to revenue, the
cost of such outages can be high. During these outages, soft-
ware support and on-premise administrative personnel can
struggle to determine where the offending stream is originat-
ing and then attempt to determine both tactical and strategic
approaches to alleviate it. The proliferation of third-party
middleware and custom solutions creates variations of con-
figurations that can make it difficult to describe or contain the
flow of transactions such that resources are equitably con-
sumed.

SUMMARY

A method includes receiving a series of transactions in a
data stream for an authenticated network session. A detection
engine determines whether the transactions form a transac-
tion storm. In response to determining that the transactions
are a transaction storm, metrics associated with the transac-
tion storm are presented along with actions that can be
applied. One or more actions may be selected to be applied in
a subsequently detected transaction storm.

BRIEF DESCRIPTION OF THE DRAWINGS

The present embodiments may be better understood, and
numerous objects, features, and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings.

FIG. 1 depicts components of a system for detecting and
controlling transaction storms.

FIG. 2 is a flowchart illustrating a method for detecting
transaction storms.

FIG. 3 is a flowchart illustrating a method for controlling
transaction storms.

FIG. 4 illustrates an example user interface form used to
configure various parameters for use in detecting transaction
storms.

FIG. 5 illustrates an example user interface for presenting
information related to a transaction storm.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 6 illustrates an example user interface form for pre-
senting detail information related to a transaction storm.

FIG. 7 illustrates an example user interface form that may
be used to provide input parameters specifying remediation
actions to be performed upon detection of a transaction storm.

FIG. 8 illustrates an example user interface form providing
transaction sequence information.

FIG. 9 is an example user interface form that illustrates
further actions that may be specified and stored for applica-
tion to transaction storms.

FIG. 10 depicts an example computer system.

DESCRIPTION OF EMBODIMENT(S)

The description that follows includes exemplary systems,
methods, techniques, instruction sequences and computer
program products that embody techniques of the present
inventive subject matter. However, it is understood that the
described embodiments may be practiced without these spe-
cific details. In other instances, well-known instruction
instances, protocols, structures and techniques have not been
shown in detail in order not to obfuscate the description.

In general, the embodiments of the invention detect trans-
action storms in data streams associated with authenticated
network sessions, and apply actions designed to remediate or
mitigate the effect of a transaction storm. A transaction storm
is a series or stream of closely packed transactions where the
frequency and resource consumption of the series of transac-
tions has the potential to cause deleterious effects within a
system. Such deleterious effects can include reduced
response times caused by overuse of resources due to the
transaction storm or service outages when processor, memory
or network resources become unavailable due to a transaction
storm.

FIG. 1 depicts components of a system 100 for detecting
and controlling transaction storms. In some embodiments,
system 100 includes a server 102, a transaction storm man-
agement unit 110 and a transaction database 112. Server 102
includes service 104, transaction storm detection engine 106
and transaction storm action engine 108. Service 104 can be
any type of service that supports transactions. Examples of
such services include database services, middleware services,
etc. For the purposes of this specification, a transaction is a
atomic set of one or more operations that are to be completed
as a single unit of work. If any of the operations of the
transaction fail, the whole transaction fails and none of the
operations in the transaction have any effect. Examples of
transactions include database transactions and remote proce-
dure calls (RPC). However, the embodiments are not limited
to any particular type of transaction.

Clients 114 and servers 116 may make use of service 104.
For example, an application running on client 114 or server
116 may make use of a database service running on server
102. In order to make use of service 104, a client 114 or server
116 establishes an authenticated session with service 104. An
authenticated session is a network session in which a user of
an application on client 114 or server 116 that initiates trans-
actions for service 104 has been positively identified. Typi-
cally such authentication takes place via a user identification
and password combination. Authentication may also include
authenticating a machine identification of client 114 or server
116.

After authentication, applications on client 114 or server
116 may send transactions for processing on service 104.
Transaction storm detection engine 106 monitors the trans-
action requests issued by a client 114 or server 116 and stores
attributes of the transactions to transaction database 112.

US 9,270,562 B2

3

Transaction storm detection engine 106 applies rules and
heuristics to the transaction data in transaction database 112
to determine if a transaction storm is detected within an
authenticated session. The rules for detecting a transaction
storm may be configured by a system administrator or other
party using transaction storm management unit 110 and
stored in transaction database 112.

Upon detecting a transaction storm, transaction detection
engine may store details about the transaction storm in trans-
action database 112. A user at transaction storm management
unit 110 may be presented with a user interface that indicates
the transaction storms that have been detected. In addition,
transaction storm management unit 110 may provide a user
interface allowing a user to configure actions to be applied in
subsequently detected transaction storms.

In some embodiments, transaction storm action engine 108
receives an indication of a transaction storm in progress and
applies actions configured using transaction storm manage-
ment unit 110 to attempt to mitigate the impact of the trans-
action storm.

Monitoring of transactions in an authenticated network
session and applying actions to transactions may take place at
several levels. For example, in some embodiments, detection
engine 106 and action engine 108 may intercept and inspect
packets prior to delivery to service 104 or after issuance by
service 104. In such embodiments, detection engine 104 and
action engine 106 have knowledge of the application layer
data formats of data packets exchanged between client 114
and service 104 or server 116 and service 104. Further, detec-
tion engine 106 and action engine 108 may maintain state
information regarding the network session between a client
114 or server 116 and service 104. Such state information is
thus maintained separately from the application or service
that is intended to receive the transaction and execute the
transaction.

In alternative embodiments, service 104 may provide an
API (application program interface) for use by detection
engine 106 and action engine 108 in detecting transactions
and determining session state.

Various combinations of the elements illustrated in FIG. 1
may be possible as will be appreciated by one of skill in the art
having the benefit of the disclosure. For example, although
one service is illustrated in server 102, multiple services
could be present onaserver 10. Similarly, multiple clients and
servers may interact with a service and detection engine 106
and action engine 108 may monitor multiple authenticated
sessions. Further, either or both of detection engine 106 and
action engine 108 may be implemented as proxy services on
a computer system between a client 114 or server 116 and
service 104.

Further details on the operation of example embodiments
are provided below with respect to FIGS. 2-10.

FIG. 2 is aflowchart illustrating a method 200 for detecting
transaction storms. Method 200 begins at block 202 with
receiving transactions in a data stream for an authenticated
network session. As an example, a detection engine 106 may
inspect packets between a client and a service (or a server and
a service). As packets containing transaction data are
received, attributes regarding the transactions and the state of
transactions may be maintained. Such data may include the
source of the transaction, a time that the transaction occurred,
the duration of a transaction, a number of transactions, a time
interval between transactions etc. The data may be storedin a
database for analysis by detection engine 106 or other com-
ponents.

Atblock 204, a decision is made as to whether transactions
received at block 202 form a transaction storm. In some

15

20

25

35

40

45

50

55

65

4

embodiments, various rules may be implemented to deter-
mine if a set of transactions form a transaction storm. In some
embodiments, the rules may be implemented as a means for
determining if a set of transactions were each generated by a
human operator or generated by an automated operator on the
assumption that transactions generated by a human operator
should not be interfered with, but operations generated by an
automated operator that may cause a transaction storm can be
interfered with. As an example, a rule may specify that if the
average interval between a predetermined or configurable
number of transactions are less than a predetermined or con-
figurable threshold, then a transaction storm exists. For
instance, a rule may be configured such that if 100 transac-
tions arrive during an authenticated session where the average
time is less than fifty milliseconds between transactions, then
a transaction storm exists for that session. It is unlikely that a
human operator can generate such a transaction volume,
therefore an automated process is likely the source of the
transactions. It should be noted that a human operator may
initiate automated operations that cause a transaction storm.

In some embodiments, a default set of rules operates to
detect transaction storms. The default set of rules and param-
eters may be overridden by user input as will be further
described below.

FIG. 4 illustrates an example user interface form 400 used
to configure various parameters for use in detecting transac-
tion storms. Input elements are indicated in bold and are
underlined in FIG. 4. As shown in FIG. 4, a system adminis-
trator or other use may provide data specifying a server name
on which transaction storm detection is to be implemented. A
user may specify a specific server name or provide wildcard
indicators to specify that all servers in a system are to monitor
transactions for the existence of transaction storms. One or
more wildcard characters can be included along with text
partially specitying a name. For instance, a server name prefix
or suffix can be included with one or more wild card charac-
ters to match a set of servers that can be a subset of the servers
in an enterprise. In some embodiments, regular expressions
may be used to specify a server name. The example user
interface form 400 includes input parameters specifying a
number of consecutive transactions and an average time
between transactions that upon occurrence, triggers a trans-
action storm detection. Further, a consumed processing time
may be configured such that if the processing time consumed
by the number of transactions specified on the form exceeds
the indicated amount, the transactions will be indicated to be
a transaction storm. Other attributes that may be configured
include an attribute specifying that the source of the transac-
tions be a client, a server, or either. A particular user or system
name may be specified as source filter of transactions, or
alternatively, one or more wildcard characters may be speci-
fied indicating any user or server name may be a source of a
detected transaction storm. As described above, one or more
wild card characters may be included with text partially speci-
fying a user or server name such that a subset of user names or
server names may be selected according to a match with the
text. The input text specifying the user or server name may be
a regular expression. Additionally, a time period may be
specified use in determining whether a transaction storm
exists. Transactions outside of the specified time period may
be ignored for purposes of detecting a transaction storm.
Other parameters and rules may be configured for use in
detecting transaction storms as will be appreciated by one of
skill in the art having the benefit of the disclosure.

US 9,270,562 B2

5

Returning to FIG. 2, if a transaction storm is not detected,
the method returns to block 202 to continue monitoring
incoming transactions. If a transaction storm is detected, flow
continues to block 206.

At block 206, metrics associated with the detected trans-
action storm may be stored for presentation to a user, for
example, a system administrator using a transaction storm
management unit.

FIG. 5 illustrates an example user interface 500 for pre-
senting information related to a transaction storm that may be
presented as part of the operations performed at block 206. In
some embodiments, a user interface screen 502 presents
information including a transaction storm identifier assigned
by the system to a detected transaction storm, a server iden-
tifier of the server affected by the transaction storm, a source
identifier or originator of the transaction storm and a time
interval during which the transaction storm occurred.
Example user interface 500 includes a transaction storm
selection interface 504 that provides various options for view-
ing and specifying actions related to transaction storms. In
some embodiments, selection interface 504 includes a view
storm option, a define action option, a view storm details
option and an advance action option. Each of the selected
options may apply to a currently selected transaction storm
provided on user interface screen 502. Thus in the example
illustrated in FIG. 5, the actions in selection screen 504 will be
applied to the transaction storm having the storm identifier
“TSID10017.”

FIG. 6 illustrates an example user interface form 600 thatis
presented upon selection of “View Storm” from selection
interface 504 (FIG. 5). In some embodiments, information
presented about a transaction storm includes a transaction
storm identifier that is used to identify a particular transaction
storm; a server experiencing the transaction storm; the time
the transaction storm occurred; the number of transactions
within the storm and the average time between transactions;
the total processing seconds consumed by the transactions in
the transaction storm; whether the storm occurred in a data
stream initiated by a client, a server or both; and an identifier
of a user or server that initiated the data stream that included
the transaction storm. In some embodiments, the processing
seconds are wall clock seconds. In alternative embodiments,
other time measurements can be used, including processor
times if available. Those of skill in the art having the benefit
of the disclosure will appreciate that other data could be
included on form 600.

Returning to FIG. 2, at block 208, an indication of an action
to be applied to subsequently detected storms is received. In
some embodiments, actions to be applied to subsequently
detected storms include introducing a delay between transac-
tions. In further embodiments, the actions may include caus-
ing a transaction to return a predetermined or configured error
code to the transaction initiator without submitting the trans-
action to a service 104.

FIG. 7 illustrates an example user interface form 700 that
may be used to provide input parameters specifying remedia-
tion actions to be performed upon detection of a transaction
storm in a data stream for a session. In some embodiments,
user interface form 700 includes input parameters specitying
a time delay to be introduced between transactions. Check
boxes 702 and 704 can be used to indicate that the delay is to
be introduced before or after a transaction. User interface
form 700 also includes an input parameter specifying that an
error code is to be returned in place of executing the transac-
tion. User interface form 700 also includes parameters that
are used to detect a transaction storm. In some embodiments,
the parameters can be supplied by inputting a transaction

10

15

20

25

30

35

40

45

50

55

60

65

6

storm identifier (e.g., “TSID10017” in the example shown in
FIG. 7). The parameters used to determine what actions will
be applied to a subsequently detected transaction storm may
be different from the parameters used to initially detect a
transaction storm. User input form 700 provides input param-
eters used to specify new values or modify existing values of
parameters. For example, similar to storm detection param-
eters illustrated in FIG. 4, input parameters in user interface
form 700 may include a server name on which transaction
storm remediation actions are to be applied. The example user
interface form 700 includes input parameters specifying a
number of consecutive transactions and an average time
between transactions that upon occurrence, triggers the trans-
action storm remediation actions specified on the form. Fur-
ther, a consumed processing time may be configured such that
if the processing time consumed by the number of transac-
tions specified on the form exceeds the indicated amount, the
transaction storm remediation actions will be initiated. Other
attributes that may be configured include an attribute speci-
fying that the source of the transactions be a client, a server, or
either. A particular user or system name may be specified as
being subject to the transaction storm remediation actions, or
alternatively, one or more wildcard characters may be speci-
fied indicating any user or server name may be subject to
transaction storm remediation actions. As described above,
the one or more wildcard characters may be included with text
that partially specifies a user or server name such that a subset
of'user names or server names in an enterprise may be speci-
fied. Additionally, a time period may be specified use in
determining when to apply transaction storm remediation
actions. Other parameters and rules may be configured foruse
in initiating transaction storm remediation actions as will be
appreciated by one of skill in the art having the benefit of the
disclosure.

FIG. 3 is a flowchart illustrating a method 300 for control-
ling transaction storms. In some embodiments, method 300 is
initiated when rules for applying actions to detected transac-
tion storms have been supplied. Like method 200 described
above, method 300 begins by receiving transactions in a data
stream for an authenticated network session. In some embodi-
ments, packet data is inspected and data regarding transac-
tions and transaction states may be maintained.

Atblock 304, the data regarding the transactions and trans-
action states is compared against rules that have been speci-
fied for detecting actionable transaction storms to determine
if an actionable transaction storm is detected. If no actionable
transaction storm is detected, the method returns to bock 302
to receive further transactions for the data stream in the net-
work session.

If the check at block 304 determines that an actionable
transaction storm is detected, then at block 306 remediation
actions are initiated. In some embodiments, the remediation
actions at either or both of blocks 308 and 310 may be per-
formed.

At block 308, a delay is introduced into one or more trans-
actions. The magnitude of the delay may be predetermined or
configurable. Further, the delay may be introduced before the
transaction is presented to a service, or after a response to the
transaction has been generated by the service for return to the
transaction initiator (e.g., client 114 or server 116 of FIG. 1).
In some embodiments, a default delay of one millisecond is
introduced either before or after a transaction executes. The
method then returns to block 302 to receive and analyzed
further transactions, either for the current session to deter-
mine if the transaction storm continues in the session, or in
other sessions to determine if other transaction storms are
occurring.

US 9,270,562 B2

7

At block 310, an error code is returned to a transaction
initiator in place of delivering the transaction request to a
service. The error code to be returned may be predetermined
or configurable. Upon receiving the error code, the transac-
tion initiator may interpret the error code and take whatever
action the transaction initiator determines appropriate for the
error code. For example, an error code may be configured that
is known to cause a transaction initiator to retry the transac-
tion at a later time. Alternatively, the error code may be one
that causes the transaction initiator to stop sending transac-
tions. The transaction storm caused by the transaction initia-
tor can be halted, because the transaction initiator ceases
sending transactions as a result of the error code. The method
then returns to block 302 to receive and analyze further trans-
actions and data streams that may be part of other session to
determine if a transaction storm exists in other sessions.

In some embodiments, transaction sequences may be iden-
tified within a storm and isolated by a detection engine 106. It
is often the case that a transaction sequence will include a
single instance of a first type of transaction followed by
multiple instances of other types of transactions. The
sequence may, but not necessarily be terminated by a single
instance of a third type of transaction. In some embodiments,
detection engine 106 can analyze transaction data in a trans-
action database to determine the presence of such sequences.
The remedial actions can be tailored to such sequences as will
be illustrated in FIGS. 8 and 9.

FIG. 8 illustrates an example user interface form 800 that in
some embodiments may be presented in response to selection
of a “Storm Detail” menu element from selection interface
504 of FIG. 5. Example user interface 800 includes a trans-
action storm summary portion 802, a transaction summary
portion 804, and transaction sequence summaries including a
first transaction sequence summary 806 and a second trans-
action sequence summary 808. Transaction storm summary
portion 802 includes the same information as has been
described above regarding FIG. 4.

Transaction summary portion 804 includes information
about various types of transactions that were a part of the
selected transaction storm. Such information can include the
transaction type, a count of the number of times the transac-
tion type occurred during the transaction storm, the total
processing seconds associated with transactions having the
transaction type, and disk reads and writes associated with
transactions having the indicated transaction type. Those of
skill in the art having the benefit of the disclosure will appre-
ciate that other information could be gathered and included in
the transaction summary portion.

As noted above, example user interface 800 includes infor-
mation regarding transaction sequences that were detected in
a selected transaction storm. In the example shown in FIG. 8,
two transaction sequences were detected in the selected trans-
action storm. For each transaction sequence, information can
be presented regarding the sequence. For example, the num-
ber of times a transaction sequence occurs can be provided. In
addition, a relative ordering of transactions in the sequence
can be indicated and a minimum and maximum count of the
number of times a particular transaction occurs in the
sequences can be provided. As an example, in a first transac-
tion sequence summarized in transaction sequence summary
portion 806, the form indicates that the sequence occurred 73
times. The sequence begins with a single “OPEN_COLLEC-
TION” transaction, followed by repeated “GET_
NOTE_INFO” and “OPEN_NOTE” transactions. The trans-
action sequence ends with a “UPDATE_MULT _NOTE”
transaction, which occurred a minimum of once during a
sequence and a maximum of 47 times during a sequence.

10

15

20

25

30

35

40

45

55

60

65

8

In the example presented in FIG. 8, it can be seen that the
UPDATE_MULT_NOTE transaction, though having rela-
tively few invocations, is the biggest consumer of the mea-
sured system resources. It can also be seen that detection
engine 106 determined that an OPEN_COLLECTION trans-
action begins both types of typical sequences as illustrated in
transaction sequence summaries 806 and 808.

FIG. 9 is an example user interface form 900 that illustrates
further actions that may be specified and stored for applica-
tion to transaction storms. Similar to the interface illustrated
in FIG. 5, user interface form 900 includes input parameters
that allow a delay to be introduced either before or after
transactions. However, user interface form 900 provides fur-
ther control for actions by providing for specification of par-
ticular types of transactions to delay. In the example illus-
trated in FIG. 9, user interface form 900 presents a list of the
types of transactions detected during a selected storm. A user
can specify which types of transactions are to be delayed, and
whether the delay is to occur before or after the transaction
type is executed. Thus actions can be specified that occur at
the beginning or end of a loop that processes a series of
transaction in a detected transaction sequence, thereby
increasing the chances of completing units of work within the
detected sequence. This also increases the probability that the
transaction sequence itself will complete successfully. In
addition, a user interface element is provided allowing a user
to specify a frequency for introducing a delay (e.g., introduce
a delay every fifth execution of the transaction type).

Similarly, user interface form 900 provides user interface
elements allowing a user to specify a value to be returned by
specific transaction types. Upon enabling such a rule, the
value is returned to the transaction initiator and the transac-
tion is not executed.

As will be appreciated by one skilled in the art, aspects of
the present inventive subject matter may be embodied as a
system, method or computer program product. Accordingly,
aspects of the present inventive subject matter may take the
form of an entirely hardware embodiment, an entirely soft-
ware embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may all generally be referred to herein
as a “circuit,” “module” or “system.” Furthermore, aspects of
the present inventive subject matter may take the form of a
computer program product embodied in one or more com-
puter readable medium(s) having computer readable program
code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

US 9,270,562 B2

9

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present inventive subject matter may be written
in any combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The program code
may execute entirely on the user’s computer, partly on the
user’s computer, as a stand-alone software package, partly on
the user’s computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce-
nario, the remote computer may be connected to the user’s
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con-
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider).

Aspects of the present inventive subject matter are
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com-
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of'the flowchart illustrations and/or block diagrams, and com-
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

FIG. 10 depicts an example computer system. A computer
system includes a processor unit 1001 (possibly including
multiple processors, multiple cores, multiple nodes, and/or

10

15

20

25

30

35

40

45

50

55

60

65

10

implementing multi-threading, etc.). The computer system
includes memory 1007. The memory 1007 may be system
memory (e.g., one or more of cache, SRAM, DRAM, zero
capacitor RAM, Twin Transistor RAM, eDRAM, EDO
RAM, DDR RAM, EEPROM, NRAM, RRAM, SONOS,
PRAM, etc.) or any one or more of the above already
described possible realizations of machine-readable media.
The computer system also includes a bus 1003 (e.g., PCI,
ISA, PCI-Express, HyperTransport®, InfiniBand®, NuBus,
etc.), a network interface 1005 (e.g., an ATM interface, an
Ethernet interface, a Frame Relay interface, SONET inter-
face, wireless interface, etc.), and a storage device(s) 1009
(e.g., optical storage, magnetic storage, etc.). The system
memory 1007 embodies functionality to implement embodi-
ments described above. The system memory 1007 may
include one or more functionalities that facilitate detecting
transaction storms and performing actions to remediate trans-
action storms. For example, system memory 1007 may
include code for a transaction storm detection engine 1010
and a transaction storm action engine 1012. Any one of these
functionalities may be partially (or entirely) implemented in
hardware and/or on the processing unit 1001. For example,
the functionality may be implemented with an application
specific integrated circuit, in logic implemented in the pro-
cessing unit 1001, in a co-processor on a peripheral device or
card, etc. Further, realizations may include fewer or addi-
tional components not illustrated in FIG. 10 (e.g., video cards,
audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 1001, the storage device(s)
1009, and the network interface 1005 are coupled to the bus
1003. Although illustrated as being coupled to the bus 1003,
the memory 1007 may be coupled to the processor unit 1001.

While the embodiments are described with reference to
various implementations and exploitations, it will be under-
stood that these embodiments are illustrative and that the
scope of the inventive subject matter is not limited to them. In
general, techniques for detecting and remediating transaction
storms as described herein may be implemented with facili-
ties consistent with any hardware system or hardware sys-
tems. Many variations, modifications, additions, and
improvements are possible.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple-
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.

What is claimed is:

1. A method comprising:

receiving a plurality of transactions in a data stream for an
authenticated network session;

determining, by one or more processors, whether the plu-
rality of transactions comprise a transaction storm;

in response to determining that the plurality of transactions
comprise the transaction storm, presenting metrics asso-
ciated with the transaction storm and a set of one or more
actions; and

US 9,270,562 B2

11

receiving an indication to apply atleast one of the set of one
or more actions in a subsequently detected transaction
storm.

2. The method of claim 1, wherein determining whether the
plurality of transactions comprise the transaction storm
includes one or more of:

determining whether an average interval between consecu-

tive transactions of the plurality of transactions is less
than a first threshold; and

determining whether consumed processing time for the

plurality of transactions exceeds a second threshold.

3. The method of claim 2, wherein determining whether the
plurality of transactions comprise the transaction storm
includes one or more of:

determining an originator identifier of the data stream; and

determining that the plurality of transactions in the data

stream occur during a configured time interval.

4. The method of claim 1, further comprising applying the
at least one of the set of one or more actions in the subse-
quently detected transaction storm.

5. The method of claim 4, wherein applying the at least one
of the set of one or more actions includes one or more of:

adding a delay to one or more transactions of the plurality

of transactions in the data stream; and

returning a value in response to detecting a transaction

having a predetermined transaction type.

6. The method of claim 5, further comprising determining
a transaction sequence within the plurality of transactions,
and wherein adding the delay to one or more transactions
comprises adding the delay to a transaction in accordance
with a transaction type of the transaction.

#* #* #* #* #*

10

20

25

30

12

